блог галины Баевой

Образование гистидина

Гистидин – условно-незаменимая аминокислота. В организме человека она синтезируется в количестве, недостаточном для обеспечения нормальной жизнедеятельности, поэтому обязательно должна поступать с пищей. Для детей данная аминокислота является незаменимой.

Аминокислота гистидин входит в состав белков, поэтому называется протеиногенной. Она необходима для роста и развития всех органов и тканей, играет важную роль в синтезе гемоглобина – переносчика кислорода в крови, входит в активный центр многих ферментов, является предшественников важных соединений: гистамина, карнозина, ансерина.

            Гистидин – гетероциклическая диаминомонокарбоновая аминокислота.

структурная формула гистидина

структурная формула гистидина

Молекула гистидина имеет один карбоксильный кислотный хвост, и две аминные головы, одна из которых включена в циклическое соединение. Имея две аминные головы, аминокислота обладает основными свойствами, т.е. в водном растворе сдвигает водородный показатель (рН) в щелочную сторону (>7). Аминокислота обладает высокогидрофильными свойствами, т.е. хорошо растворяется в воде. В глобулярных белках располагается преимущественно на поверхности.

Гистидин называют суперкатализатором по его значению в ферментативном катализе,  т.к. он входит в активный центр многих ферментов.

Биологическая потребность.

Суточная потребность в гистидине составляет для взрослого человека 1,5-2 г., для грудных детей: 34 мг\кг. веса, т.е. 0,1 – 0,2 г.

Биосинтез гистидина

Биосинтез гистидина очень сложен, это каскад из 9 реакций, неудивительно, что организм предпочитает получить аминокислоту в готовом виде. Начальными соединениями для синтеза гистамина выступают: аденозин-трифосфорная кислота (АТФ) и 5-фосфорибозил-1-пирофосфат (ФРПФ).

АТФ – это та горючка, на которой работает организм, соединение, поставляющее энергию. Она имеет сложное строение и состоит из пуринового основания аденина, пятичленного сахара рибозы и трех хвостов – остатков фосфорной кислоты.

Образование гистидина

5-фосфорибозил-1пирофосфат (ФРПФ) – соединение, образующееся из рибозо-5-фосфата, пятичленного сахара рибозы с присоединенным хвостом фосфорной кислоты. Рибоза-5-фосфат образуется, как конечный продукт пентозо-фосфатного цикла, каскада реакций превращения глюкозы – обычного сахара.

Образование гистидина

Рибозо-5-фосфат присоединяет к себе два фосфорных хвоста из молекулы АТФ и превращается в необходимый для синтеза гистидина 5-фосфорибозил-1-пирофосфат (ФРПФ). Таким образом, начальными продуктами синтеза являются: сахар глюкоза и 2 молекулы АТФ.

Синтез молекулы гистидина начался. Конвейер заработал. К молекуле 5-фосфорибозил -1- пирофосфата (ФРПФ) присоединяется молекула АТФ.

Образование гистидина

При этом от молекулы ФРПФ отрывается пирофосфатный хвост, а пуриновое ядро азотистого основания АТФ присоединяется к углероду пятичленного сахара рибозы в молекуле ФРПФ.

На втором этапе от образовавшегося монстра отщепляются еще два фосфорных остатка, которые на начальном этапе принадлежали АТФ.

Образуется соединение фосфорибозилАМФ.

Образование гистидина

Третий этап. Гидролиз, т.е. присоединение воды к пуриновому ядру, принадлежащему изначально молекуле АТФ. Углеродное кольцо разрывается, кислород воды присоединяется к углероду, а пара водородов отходит к соседним азотам, каждому по водороду, чтобы никому обидно не было.

Образование гистидина

Четвертый этап. Кольцо пятичленного сахара рибозы размыкается, колечко рибозы разворачивается, при этом отщепляется молекула воды.

Образование гистидина

На пятом этапе происходит метаморфоза. В реакцию вступает глутамин, который отдает азотистый остаток, а забирает гидроксильный остаток — ОН, превращаясь в глутаминовую кислоту (глутамат).

Образование гистидина

Глутаминовая кислота и глутамин – два соединения, постоянно обменивающиеся азотными головами. Аммиак, образующийся при работе, захватывается глутаминовой кислотой, которая превращается в глутамин – транспортную форму переноса азотистой группы. Глутамин используется в разнообразных реакциях синтеза,  вот и для образования имидазольного кольца гистидина пригодился.

Реакция обмена азотистой головой глутамина с глутаминовой кислотой выглядят так:

Образование гистидина

 Соединение, идущее на синтез гистидина, перегруппировывается, от него отщепляется корона – рибонуклеотид — 5-аминоимидазол-4-карбоксамид – промежуточный продукт синтеза АТФ. На синтез АТФ оно и направится.

Образование гистидина

Другой продукт расщепления содержит пять атомов углерода из первоначального скелета сахара рибозы, один атом углерода и один атом азота, отщепленные от первоначально вступившей в реакцию молекулы АТФ, и один атом азота, принесенный глутамином. Одновременно замыкается имидазольное кольцо.

В результате получается заготовка для гистидина.

Образование гистидина

На шестом этапе отщепляется еще одна молекула воды

Образование гистидина

Седьмой этап:  молекула глутаминовой кислоты жертвует свою аминную голову, превращаясь в α-кетоглутарат. Аминная голова глутаминовой кислоты (глутамата) приращивается к заготовке гистидина.

Образование гистидина

Соединение теряет фосфорный хвост, превращаясь в спирт

Образование гистидина

На заключительном этапе образовавшийся спирт окисляется молекулой НАД, и спирт превращается в аминокислоту.

Образование гистидина

Весь цикл превращения выглядит так:

Образование гистидина

Веществами – предшественниками для синтеза гистидина выступают:

  1. Глюкоза, которая в пентозо-фосфатном цикле превращается в фосфорибозил-пирофосфат (ФРПФ). Углеродный скелет сахара станет углеродным скелетом аминокислоты
  2. Две молекулы АТФ, одна жертвует фосфорным хвостом для синтеза ФРПФ, другая отдает пуриновое основание для синтеза имидазольного кольца гистидина
  3. Глутаминовая кислота, которая расходуется очень экономно: первоначально молекула глутаминовой кислоты захватывает аммиак, превращаясь в глутамин, необходимый для синтеза гистидина. В ходе реакции глутамин отдает азотную группу, вновь превращаясь в глутаминовую кислоту, которая может быть использована для дезаминирования, дабы отдать азотную группу заготовке гистидина.
  4. Две молекулы НАД для окисления спирта в аминокислоту.

Другая схема того же каскада реакций:

Образование гистидина

На всех этапах синтеза задействованы ферменты:

  1. АТФ-фосфорибозил трансфераза
  2. Пирофосфогидролаза
  3. Фосфорибозил АМФ циклогидролаза
  4. Фосфорибозил формимино-5-аминоимидазол-4-карбоксамид рибонуклеотид изомераза
  5. Глутамин амидо трансфераза
  6. Имидазолглицерол – 3 – фосфатдегидратаза
  7. Гистидинол фосфат амино трансфераза
  8. Гистидинол фосфат фосфатаза
  9. Гистидинол дегидрогеназа

Синтезировать самостоятельно гистидин – трудно и энергозатратно. Куда проще получить его в готовом виде из продуктов питания.  А надобность в гистидине велика. О биологической роли аминокислоты читайте далее: http://zaryad-zhizni.ru/biologicheskaya-rol-gistidina/

Этот блог читают 3875 женщин,
пока стоят в фартуке на кухне. Читай и ты.
Комментариев 5
  • Андрей

    Уважажамая госпожа Баева!

    Могу я узнать,откуда Вы взяли такую подробную схему биосинтеза гистидина?

    С уважением Малиновский А.В.

    03.12.2018 | 09:40
    • Галина

      Из учебника биохимии.

      19.12.2018 | 16:11
      • Тамара

        Можете конкретно указать какой учебник вы использовали, пожалуйста

        16.04.2019 | 19:55
        • Галина

          Постараюсь найти автора. Я не сохраняю ссылки к статьям, поэтому вместо написания монографии веду блог в интернете.

          16.04.2019 | 21:07
          • Галина

            Учебник Основы биохимии Лениджера 2015

            01.07.2019 | 22:35
Оставить коментарий
:p :-p 8) 8-) :lol: =( :( :-( :8 ;) ;-) :(( :o: :smile1: :smile2: :smile3: :smile4: :smile5:
Заряд жизни. Блог Галины Баевой.
© 2015 Заряд Жизни Блог Галины Баевой.
Информация на сайте носит ИСКЛЮЧИТЕЛЬНО ознакомительный характер и НЕ ПРИЗЫВАЕТ к самостоятельному лечению. Консультируйтесь у квалифицированного врача.